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GENERALIZED OHM'S LAW IN MULTIFLUID SYSTEMS 

SUMMARY 

A generalized Ohm's law i n  mu1 tifluid systems under non-Local-Tkermo- 

dynamic-Equilibrium (non-LTE) i s  derived through the macroscopic description of 

the Boltzmann equation. I t  i s  shown that the ff rsf order approximation can be 

written as a function of the electric and magnetic Field. The second order 

approximation is shown to be a function of the electric and magnetic field with 

the e ~ ~ ~ ~ t s  of the gradients of density, temperature# and mean flaw velocity of 

~ n ~ i v ~ d ~ ~ l  mixture components, and of the effects of the infernal degrees of' 

freedom of the particles, The derivation i s  lirnfted to a slightly ionized gasr Same 

u t ~ ~ ~ s  in the area of astrophysical problems are dtscussed. 



ACKNOWLEDGEMENTS 

The author i s  indebted to Dr. Yoshinari Nakagawa, High Altitude 

Observatory of National Center for Atmospheric Research for suggestions to 

investigate this problem, and to Dr. J. J . Brainerd for reading this manuscript. 

The author also wishes to express his thanks to Mrs. Ann White for typing 

this paper. 

... 
111 



CO NTE NT S 

Summary 

I .  Introduction 

11. Basic Equations 

I11 Method of Approximation 

IV. Ohm's Law for N-Component G a s  Mixture under non-LTE i n  the First Order 

Approxi mation 

V. Ohm's Law for N-Component Gas Mixture under non-LTE in the Second 

Order Approximation 

VI. Calculation of the Kinetic Coefficients 

VII. The Electric Conductivity and the Generalized Ohm's Law for a Partially 

Ionized Plasma Under Non-LTE 

VI11 . Discussions 

i v  



I .  INTRODUCTION 

Applied research i n  plasma containment, heating, or acceleration, and 

research in magnetogasdynamics presently use simplified versions of the generalized 

Ohm's law to describe conduction of current through a high-temperature gas mix- 

ture - Important effects are usually neglected; examples are: (1) the electromotive 

forces due to temperature and density gradients, (2) the contributions to the trans- 

port coefficients by components other than the electrons, neutral or singly-ionized 

atoms of a single species, and by thermal diffusion, and (3) the contribution of the 

internal degrees of freedom of the particle. Therefore, this paper i s  devoted to the 

formulation of a conduction (Ohm's) law of general validity for a multifluid system 

under conditions of non-l oca1 -thermodynamic-equilibrium (non-LTE), and to 

determine the functional dependence between the current density and the acting 

force mechanisms, (i .e., electric field, wagnetic f ield and the gradients of the 

macroscopic quanti ties). 

This investigation of Ohm's law is based on the derivation of a closed set 

of transport equations for the mean velocities of the N-component gas mixture 

under non-LTE conditions by means of the macroscopic description of the Bo1 tzmann 

equation. In order to allow each component gas in the mixture to be at ips own 

temperature and mean velocity (i .e., at macroscopic non-LTE), we use the velocity 

distribution developed by Wu c11, which refers each component gas to i t s  own 

system center of mass. Application of the Chapman-Enskog c21 method of succepive 

approximations, together with the chosen distribution funcfion, enables us to obtain 

directly, for an N-component gas mixture under non-LTE, both the form of Ohm's 
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law and expressions for its coefficients. 

Recently, Demetriades and Argyropoulos r-31 have derived the Ohm's law 

based on the 13-moments method originated by Grad [41, and on the collision 

model given by Aligevskiy and Zhdanov 151 for a nonisothermal plasma (with 

temperature and pressure gradients but ignoring the internal degrees of freedom). 

The results presented in this study are similar to those obtained by Demestriades 

and Argyropoulos but have new features due to the contribution of the internal 

degrees of freedom of the particle. Further, without elaborate calculation, the 

results show that the electromagnetic f ield will affect the magnitude of the trans- 

port phenomena. 
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1 1 .  BASIC EQUATIONS 

In the kinetic description of a n  N-component gas'mixture,' the distribution 

function f (w 

equation a re  usedf where the  Boltzmann equation can b e  written in the center 

of mass coordinate system a s  following: 

ir, t )  for each  constituent gas  and the corresponding Boltzmann 
s s  

= C J . (f f.), (1) 
S a af 

S 
e af 
S 

S S S 

+- (a X f H )  . - - - m S ae: ac 'sh% j si s i  

with 

where C represents the peculiar velocity given by  
S 

c = w  - (Eo, 
S S 

and CE represents the mean velocity of the mixture defined as 
0 

p c  = c p u t  f 

0 s s s  (4) 

p = C p  " Z n  m (mass densi ty)f (4.4 s s  s s s  

In order to include the internal electronic degrees of fraedom, we write 
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where p denotes the quantum state, and the mean velocity of the constituent gas 

of "si' kind i s  given by 

1 
u1 = - q \ v  f d\v , 
s n s p  s s p  s 

where n , the number densitylis defined by n =C lf dw , ]E and IHI denote 

the strength of electric field and magnetic field respectiv i y ,  es the electric 

charge, m the mass of the constitu nt gas of J kind, Q the r 

velocity between constituent gas s and i, as gJi ws w., denotes 

S S P S P S  

S s i  

I 
f t.h 

l i  



with 

1 2  and -m C +E The conservation equations immediately follow by taking cp = 1, m C s s  2 s s  sp S 

where G represents the internal energy of s specie at quantum state pf thus 
S P  

- + n - . a  S a +- a . (n z) =An I (eq. of continuity), 
Dn 

S D t s air o air s s 

0 
e e DC - p  ( ~ i E + - C o x ~ - - - - ) - n e  S ( E x  H) 

s m  m D t  s s  s 
S S 

= p A 3  , (eq. of momentum conservation), 
s s  

- a  e Dci: -Pr. s s  c I E + L C  m o  xIHI--$)+pCC s s s :-C arr o 
S S 

= A (- 1 2  p C ) , (eq. of energy conservation), 
2 s s  
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Define: 

a) Pressure tensor of component gas 

- 
IP = P C C  =CJmQ:( i : f  dC , 

s s ssp s P s s s s  

b) Heat flux of component gas 

c) Conduction current of component gas 

JJ = n e  Q:, 
s s s  s 

and JJ = n e C  
so s s o  

Therefore, Eq. (1 1) and ( 13 become: 

a a - a  DE 
s - a  +- * I P ~  - c S G  e (P if) - n e IE 

s s  s s  PST+PE s s atr o arr 

-If x H I = p @  / 
0 

DC 
- 4  xlHI+p - 

so s D t  s s s  
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111 METHOD OF APPROXIMATION TO THE BOLTZMANN EQUATION. 

The Chapman-Enskog method of solution is to. employ the subdivision 

of the Boltzmann equation together with the expansion of the solution. Thus, 

f i rs t  let us expand the solution and write 

..... , (17) f 
sp SP SP SP 

= f  (0) + f  (1) + f(2) + 

(0) 
where f 

the corrections for the non-LTE. In  order to separate the translational and 

internal degrees of freedom, follow the Born Oppenheimer's approximation; 

thus 

denotes the equilibrium distribution function and f(r) (r> I )  ore 
SP SP 

tr in f = f  f (p), 
sp s s 

tr 

S I  
where f 

degrees of freedom and fin (pI irI t) = n (p, w, t) represents that of the internal 

degrees of freedom. Then the expansion of Eq. (18) becomes 

jr, t) represents the distribution related to the translational 

S S 

tr in tr(O) + p(')+ o. .) (f'"(o)(p) + f in(1) (p) + . . .) f = f  f (p)=(f  
S S S S sp s s 

where we write 

tr(l)- ftr(o),tr , and = fin(')(p) yrin(p) , 
S S S S S 5 

f -  
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with 4' denoting the usual correction proportional to the spatial gradients of 

the macroscopic properties and Y '"(p) denoting the correction for population density 

under non- LTE . 

S 

S 

Using the equilibrium distribution function given by Nakagawa c63 

and Wu [ 11, we have 

'"("(p) and F denoting Bo1 tzmann and Maxwell distribution functions with F 

referred to the center of mass system of the mixture respectively; i .e 

s S 

= 
s S 

exp ( -E /kT ) 9sp sp 0 

p ssp SPA TG) 
C exp ( -E  

and 
2 

m C  

where T represents the temperature of the mixture, 
0 

Z n T  
- s  s s  T --, 

0 n 

and 

T - T  
s T '  

s o  

S 

u =  
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Similar to the BGK modeling f73, we shall only retain the terms a and 

up io their first order. The uniqueness of this expansion can b e  secured 

s 

S 

by requiring the conservation of mass, momentum and energy with respect 

to Q: and T system, which a re  
0 0 

Now returning to  Eq. (1) we may seek the successive approximation 

of the solution f by introducing appropriate successive subdivision of the 

equation. Following the work of Chapman and Cowling [il, rewriting Eq. (1) 

in a n  operator form, 

s 

D - J  = O  , 
s si 

and its subdivision 

- J (r) - J (r) non-ef 
S s i  si = o  

where 

) I  
D = E D G )  and J = C  (J (r)el + J(r)non-el 

s r s  si r si si  
9 
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The Enskog 's method requires the subdivision of f i rs t  order approximation 

to be the vanishing collision integral, and the next order approximation to be 

balance the spatial dependence with the f i rst  order collision integral, With 

the menl"ioned scheme of approximatiop, the governiig equation for successive 

order can be obtained i n  the following manner: 

To the f i rs t  order of present approximation; 

As we should note, the expression of F in(o)(p) and F given by Eqs. (22) 

and (23) do indeed satisfy the condition of Eq. (31). Therefore, they are the 

f i r s t  order solution of the Bo1 tzmann equation (i .e. , equilibrium solution). 

S S 

To the second order of the present approximation we find; 
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where 6 denotes the correction terms involved CI and $ (We should. 

note the term J 

magnitude smaller than the term J (2) el (j .e., 0 

s s s 
(2) non-el 
4 has been dropped, because i t  i s  few orders of 

/oz: I ) .  
S i  si  

Substituting the expression of f(O) from Eq. (21) into Eq. (32), we find, 
SP 

- 
m 

2 
s 

m C  
s s  

0 
k T  -)-(--a +-c . @ ) +  

2 2kT s k T  s s 
0 0 

D i$ o s  
* DCI  m 

msCS --)-+- 3 o s  s 
+(2kT 0 2 D t  

m C  

k T  0 'so-  

aa m * 
s .  : - 

2 
s s s  3 s +Q:. (- - - ) -  +-c Q: 

s 2kT 2 alr k T  s s air 
0 0 

m C  mi8 
s s )  

s s  
m e D C  

s S 0 0  
e D C  
m D t -  k T  0 s m s D t  k T  0 a s + k T  0 

s 0 0  

s 
- (--(E --) . - (I: + (-E --) . (- 

e mcd: e m ( C  
s 5 s  --(e x H ) . -  +"(o +C)X l f y .  (*a +- 

m o  S k T m o s  0 5 0 

(33 1 
with 



. etc.)  
D InT D(E 

0 0  - 
Dt  ' D t  

0 i n  order t o  eliminate the time derivatives (i.e./ 

from previous expression, the appropriate conservation equations to this first 

order of approximation a re  needed, and are; 

for number density, 

a .C + w e  n B ) = O ,  + n  - a D n  
o s  

( A S  
- 

D t  sar s air 

for momentum, 

m 
si 

for energy , 

e a. -a c +kToG. ( n @ ) - P @  ("C x H ) = F  e, , 

E sj 

a 
I T  

s s  s s  m o 
S 

(34) 
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For rhe total gas 

and 

D T  
(cn@ 1 0 0  3 a 

) + T k T 0 & -  s s s  
($nk + C n  c 

s s s,int 

with 

p=nkT  "Cp , 
0 s s  

where c i s  the specific heat due to internal (electronic) degrees of freedom 
s, int 

and i s  given by 

C 
s, int 

with 
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el 
The symbols Tel and represent the relaxation coefficients for momentum 

and energy respectively. 
si s i  

m 

Substituting Eqs. (34) through (38) into Eq. (33) and retaining only those 

terms up to the f i r s t  order of and If3 , we find, 
S S 

- 
0 

a InT 
2 

m C  

2kT s kT 
0 0 

(2) el 
J .cF F . ( ~ $ ~ I I =  F - g) - 2 5 ,  +‘&I cs . air 
SI S I  s i 

rn * a S S 
s kT  s s a r  o kT s s atr 

acl m 
2 

+(--?)a 5 s  /-+(l-a)-q: S s o  a :  -Q:+--c*c : - m C  

2kT 2 s arr 
0 0 0 

- 2 
m C  

2 
C m C  

+ z P _ l . i n t  (- s s - -) 3 +-a s s - SP 
0 2kT 0 2 2kT 0 s kT 0 

3 3 k  

lP 2 
n e.C m C  

2 
+-(- 2 msCs 3 s s s 

3 2kT 0 - 3 ) m  s o  - z ) + j  &. (J,) so xH)  
3 2kT 0 2 s o  

The expression of Eq. (43) leads to the functional form of 

l ike f(’) itself, i s  a scalar, therefore, 

. Since Y , 
S S 

must be a scalar. 
S S 
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&x 
0 a a S Ytr=-/A . ------1B:-C - G . dl - K s ~ .  d: -IDs a,r 

a InT 

S s air s a a  0 s s 0 

a -% : -IS -4L - IE .. M [is . (5 x~&)I 
s a g s  s s s  so 

-/M\1 . (<E xH) , n 
S 

1 S a a ' n  

n 

S 
P 

- - ) T G p - $ - T -  
= ( - -  

pS 
S 

with 

The coefficients /A , G , ID ,IL a n d m 1  are vectors, jB and atlare 
s s s s  S S S 

tensors, and K , and M are scalars; they can be expessed in  the form 
S S 

1/2 
0 

2kT 

S m 
ID =(-) 

s m,n mn 3/2 SP S 
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Sm ( p2) is a sonine polynomial, used by Chapman and Cowling k21 

and Burnett b1. Yn(c ) is the n-th order polynomial used by Wang-Chang 
SP 

and Uhlenbeck c91, i .e. 

n s  

while is the dimensionless velocity 
S 
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The requirements Eq. (27)) imposed on the solution lead to the following 

conditions, 
P 

c c J F F'"(')(P) m c 
s p  s s  s s  

2, s p  JF s s  Fin(')(p)(~msCf+qp) 
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IV. OHM'S LAW FOR N-COMPONENT GAS MIXTURE UNDER NON-LTE 

IN THE FIRST (;TRDER APPROXlMATION 

By taking vs = e C i n  the Eq. (8) and together with the f irst 
s s  

order approximation of the distribution function of Eq. (21) leads to a 

generalized Ohm's law of first Srder of approximation, describing the condition 

of current in an N-component gas mixture i n  the presence of electric and 

magnetic f ield at the condition of non-LTE, we find 

where 

i s  the consequence of Eq. (I5a) 

p = n e  (charge density), 
es s s  

18 



M m m. 
with i~ = I the reduced mass and 0 the cross section for 

si  m +m. si 
S I  

momentum transfer. As we note, the expression of Eq. (49) i s  a form of 

generalized Ohm's law for the constituent gas in  N-component gas mixture. 

For the total gas, we just take the summation of Eq. (49) over al l  the 

components, thus 

P = C P (total charge density) . 
e s es 

with 

This expression represents the generalized Ohm's law, to first order 

approximation, of a gas mixture under the condition of non-LTE. I n  other 

words, this gives the law of conduction of electric current i n  a non-LTE gas 

mixture. This form of Ohm's law can be used i n  problems of the motion of 

gas with anisotropic conductivity and where non-CTE conditions prevail 

such as certain regions of the solar photosphere. 

19 



V. OHM'S LAW FOR N-COMPONENT GAS MIXTURE UNDER NON-LTE 

IN THE SECOND APPROXIMATION 

To determine Ohm's law in the form given by Eq. (49) we omittlad the, 

corrcbctjQn tern) in the distribution fupction of Eq. (19). This i s  due to the 

assumption that the gradients of mucroscipic quantities are negligible small, 

but this i s  not always a valid assumption. In particular, when the grgdlents 

bsome appreciable, i * e o t  the situation in which deviations f r m  equilibrium 

become significant, such effects have to be included i n  order to get a mor9 

realistic description. We shall go to the next order approximation by uslng 

*the distribution function given by.&. (17) and (20) fogether with sxpression 

of Eq. (44) for the correction function I! 

6s. (8)# we datain the form of the generalized Ohm's law to the second 

Again, by putting cPs es gs in 5 

ordear of appreximution a$ followsi 

with 

20 



more specifically, we find 

and the second term on the right hand side of Eq. (56) can be calculated further, 

thus 

4 

S 
-iMls (a: x h r )  s 

where only the first order terms be kept. 

Together with Eq- (45) above integration can be performed thus we find 

i n  which the terms of order of magnitude higher than 6. have been left out, while 

the tarms of spatial gradient and 6, are classified as the order of magnitude of C. 



where 

. 

Thus, the form of current aensiiy to the present order of upproximation con be 

,wtitten as: 
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I t  i s  clear that the first term on the right hand side of Eq. (59) indicates the effect 

due to the difference of mean motion of each constituent gas, (i .eo, macroscopic 

non-LTE in velocity), the second term represents the contribution from the temp- 

erature gradient (i .e., thermal conduction) which wi l l  become very important 

i n  calculations of shock structure and some solar phenomena, the third term re- 

presents the diffusion effects which include both ordinary diffusion (i .e., locai 

gradient of concentration) and thermal diffusion, and the last two terms indicate 

the contributions from the electric and magnetic fields. We should note that the 

energy distribution function of each constituent gas has been modified according 

to the conditions of non-LTE. These effects are incorporated within the coefficients 

A1 , As , 
These coefficients are called transport coefficients, and will be determined by the 

coefficients of the expansions of Eq. (45), so-called "Kinetic coefficients", and the 

Boltzmann transport equation. This  wi l l  be given in the following section. 

, & , and As, as can be observed from the expressions of Eq. (58). 
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VI. CALCULATION OF THE KINETIC COEFFICIENTS 

- I n  order to give a complete description for the generalized Ohm’s law, 

the transport coefficients have to be given in the form of the appropriate kinetic 

coefficients. To determine these kinetic coefficients i n  terms of the expressions 

of the collision integrals, we shall employ the variational principle which was 

originated by Curtiss and Herschfelder [lo] in this study. 

1. General Statement of the Method 

By substituting Eq. (44) into the L.H.S. of Eq. (43) and equating the 

corresponding coefficients of a In To , - a (co. , dl, 

find that A,, IB,, ID, , G,, WH fi  K,, U- 

etc. on both sides, we 
a ir air 

M, andIM\l, are special solutions of the 

following equations. 

i 



where the notation TBj has its usual meaning a s  defined by Chapman and Cowling 

h] and the Ss, is the kroneckerdelta.  

As we note, these sets of integral equations (Eq. (60) ) given cbove, 

are quite similar in form; thus we can  w,lre one general form for a tensor Ti I 

which includes all nine of these integral equations such as  that 

where o 3 denotes the elastic col I ision cross section. T h e  correspondence 

between the symbol 8, and ’rr, and their counterparts in Eq. (60) will b e  shown 

on Table 1 .  T h e  solution of the integral equation (61) is not unique, but this 

problem of uniqueness can b e  resolved by the solubility conditions posed on those 

functions As, IB,, etc., which can b e  also expressed in a general form of 

C n, S (Z * G ) Fs d C., = 0 I 
6 
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Table i 
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which, in  fact, requires that the value of n,, C,, and T, satisfy the conservation 

laws. Thus, the solubility conditions serve to specify exactly one of the solution 

of Eq. (60), i .e., they serve to remove an indeterminacy obtained. At present, 

we shall show how one can make use of the variational principles to obtcin 

approximate solutions :it ;he integral Eq. (60). 

Let t, be a set of functions which satisfy the equation 

S( t, :d$ s) dv, = - c n, nJ I: t, : t, -t t, I s J  (64) 
J 

The bracket notation represents the integral 

G ( H  - H') F, F, *,j d\vJ dw, (65) 

where superscript prime indicates the quantity after col I ision. It i s  easily 

shown that this i s  identical with 
* 

Fro3 Eq. (61) and Eq. (64), we find 

where the t, are the trial functions and 'IK, are the exact solutions to the 

integral Eq. (61). Now, if we sum Eq. (68) over s and make use of the symmetry 

property of Eq  . (67). The result i s  

where the curly bracket represents 

* 
Detail see Ref. C2 1 p. 67 
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It is clear that f 3 a lso possess the symmetry property 

Since c G, G 1 is the sum of the integrals, the integrands of which a re  

essentially positive, 

i G , G 3 3 0  (72) 

I f  G satisfies the solubility conditions, then t h e  equality sign can apply only 

if G is identically zero.  

Let us consider a particular curly bracket 

c t - T ,  t -p71’0 . (73 ) 

From the previous discussion, we note the equality sign can apply only if  i is 

identically equal to T. T h e  curly bracket is a linear operator. Hence, from 

Eq. (73) we have, 

c t , t ]  - 2 f t , m  + CT,T3 3 0  , (74) 

by using Eq. (69), we find 

c t , t 3  < C 2 , r r r I  9 (751 

This is the statement of the variational method of obtaining approximations of 

the solution !If8 . Thus, the method of solution a s  follows; w e  begin by  choosing 

a set of trial functions, t, , which contain a number of arbitrary parameters. 

Then, if only those trial functions a re  considered which satisfy the solubility 

conditions (Eq. (63) ), the equality sign in Eq. (75) applies only when Y8 and 

t8 a re  identical. Thus, the best approximation of the true solution of the 

integral Eq. (61) is obtained b y  maximizing c t , t 3 with respect to all the 

available parameters in the set of trial functions. That is, for the best 

approximation; 
2% 



a { t , t  ] = - 2 ~ Z f ( t , . ~ e ) d , v , = 0 ,  (76) 

This, along with Eq. (64), which restricts the choice of the trial function, forms 

the basis of the variational method of solution of the integral Eq. (61). For the 

present purpose of calculation of those kinetic coefficients, we consider the trial 

function which is known function a s  we have already chosen those functions of 

/A, , IB, - etc. ,  and which are expanded in a form of a double finite series 

of Eq. (45). Thus, we now take the trial function as a finite linear combination 

of this double finite series and its arguments are and % . 
(77) 

and these polynomials satisfy the orthogonality condition 
n 

m i  

I (78 1 - ( n  + m ) !  
%iV m! 

J x n  e-x (x) Li ( x ) d  x - 

with 6am* known a s  the kronecker delta.  In which the values of the index n '  

and the meaning of the tensor FS in Eq. (77) are shown in Table 1 1 .  

Let us define 

and 

The  trial solution should satisfy the following equation 

I (81) l ( t , : R s )  dw, - - - C n , n J  Ct,; t , + t j  1 
j 

this is the constraint equation on the trial function, with the aid of Eqs. (77), 

(79), and (80), we can rewrite Eq. (8 1) a s  such 
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Table I I  

~ 

N 

T S  n’ \vfs The series expansion coefficient tern 

a r e  designated by 

30 
I 
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According t o  the theory of variational principle, we had 

6 0 = 0  . (83 ) 

Then, the problem is to find the extremum of 0 subject t o  the constraints of 

Eq. (82)- This extremum is determined by the method of lagragian multipliers. 
C 

Let t, be the multiplier, thus 

Performing the indicated differentiations with the aid of Eqs. (80) and (82), we 

obtain 

with 

s = 1,2, . . . ., v ; number of constituent gas, 

m = 0, 1, . . . *. 5-1 ;? number of terms of the expansion 

n = 0, I,  . . . . . 5 - 1  ;]series being used, 

. 31 



It can b e  shown that the only solution t o  this set of equations together wirh 

constraint equation [ Eq. (82)l is; 

Putting this value back into Eq. (85) then the constants t,,, can be determined 

by the equation 

with 

Eqs. (87) and (88) together with the  solubility condition , Eq. (63) a r e  the 

equations which a r e  used for determining those kinetic coefficients. 
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2. The Coefficients of Conductivity of Multicomponent Non-Equilibrium 

Gas in the First Appl-oximation 

In Eq. (59) the  coefficients A1 , As , A3 , & and AE, a r e  the coefficients 

of conductivity of a multicomponent non-equilibrium gas, and i ts  general 

expressions a r e  given by  Eq. (58). To the first approximation, which means by  

only taking the first term of the double series expansion of Eq. (43, these 

coefficients can b e  expressed in terms of kinetic coefficients, thus 

k 
m, 

A2 = n, e, - TO goo I 

2 

As '2 ns Loo 
m, (89) 
T 

dm, k TO 

For determining these kinetic coefficients in terms of collisional 

integrals, we shall employ Eqs. (87) and (88) together with Table I and 11, 

which a re  given in the previous section. 

I .  The equation to b e  solved for am,, and amr I S  

and i n  this case the trial functions to the present order of approximation will b e  
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I 

Taking the scalar product of Eq. (63) by Eq. (89) respectively end integrcrting i t  

over the whole velocity range, i t  yields 

cc, 10 a’ - 14 l o a  +- - -  
i: 4: a10 + A O 1  01 1% AOO 00 J 

(90) 
01 01 4-2s- - 3 cSI int  01 f - - -  

2 k  A 1 O  a10 +2A01 a O 1  1% *00 a O O  

14 - l a s  00 -E- 1% 00 0Oa’ = - 
% A 1 O  a10 0% AO1 a O 1  +%OO 00 5 *  

where these A’s a re  collisional integrals, i t  can b e  easily evaluated by knowing 

the interaction mechanism between the gas molecuIes, and they are given i n  t h e  

fol I owing; 

A ~ : = - A ~ ~  00 , 

01 - c,,int 00 
A 10 

-- 
A 10 k 
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8 (1) 01 c,,int +c,,int 1% (m,ms) (1-45’ 45 (1) k m, +mi 
AO1 =C 

.! 

OJ with ,- 

and 
$8 ES(1 -cos a X )  g,$b  db, 

I 

where x denotes the scattering angle and b denotes the impact parameter. 

L h o ] =  

Solving from Eq. (90), we obtain 

10 01 07 10 
U 15 01 00 00 01 15 T ( ~ A  A -A A ) + -  - 01 00 01 00 4 1% (AolA00-2401 AOO) 

3 c,,int 00 10 ’IO 00 
2 k  (Aol AOO -2A01 Aoo) +- 

(93 ) 

2Al0 10 (4Ai; Ai: -Ao1  00 Aoo)+Ay i  01 (At; A:: - 2A01 01 AO0) 10 

01 00 10 10 00 
+ A 1 O  (Aol Aoo - AO1 Aoo) 
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“-(A 15 01 A oo-2AooAo1) 
4 00 10 00 10 

10 00 01 00 01 I 
+AO1 (A 10 AOO - %OOA 10) 

For determining goo , we shall use the following equation. 

n h k; K - 
F~,”(o) F, [L cr, C, (bah = n e  nj I,, (G, +G$ + G, + G, j, 

n, J 

and trial function 

W e  find 3 10AOl 10 01 
‘Z ( 4 A 1 ~  01 - A ~ ~ A ~ ~ )  

Det 1 A 1 
where 



For L o ,  the equation to be solved i s  

with the trial function 

We find 

and 

For determining MOO, the equation which needs to be soived is ,  

and the trial function for the present order of approximation can be expressed 

as 

- 7 
t, - - 3 M o o  * 

Thus we find 

Finally, to determine the kinetic coefficient , and while the equation 

to be solved i s  
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with the trial function 

We find 

14 

1 
altd ) (101) 

01 f 

f 
i 15 A i o  

p o l l =  - 4 10 01 - A I O A O i  
A I O A O l  01 10 
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VI?. THE ELECTRIC CONDUCTIVITY AND THE GENERALIZED QWM'S LAW 
FOR P. PARTIALLY IONIZED PLASMA UNDER NON-LTE. 

I n  order to show the significance of these general expressions of the 

eleCtric conductivity and Ohm's law for a N-components gas mixture undqr 

the condition of non-LTE which we present i n  previous sectign, we shqll 

choose a model gf partially ionized hydrogen plasma, namely, i t  only con- 

sists of electrons, singly ionized ions and neutral atoms. 

1 

From Eq (59) we obtain; 

elegtron current 

The Generalized Ohm's Law at non-LTE 

and ion current 

Hence the total current i s  
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We should note that, i f  the LTE condition can be established, the Eq. (104) 

becomes 

[&I0 - [&I1 
this i s  the ordinary Ohm's law which we used quite often, and i f  we compute 

the [&I - [&I, from Eqs. (89-1Ck) we find this i s  indeed the result 

of the electric conductivity given by Spitzer L 113 ignoring the higher 

order terms (e .g . , the non-LTE effects). 

2. The Electric Conductivity at nor,-LTE 

From Eq. (104) the electric conductivity at r,in-LTE can be defined 

by 

with 

= B  -t Aa , LT E 
CT 
non-LTE 

(3 LTE = [As] e - [A33 f 
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and those kinetic coefficients !&I.. .etc. can be computed from Eqs. (89-101) 

and i t  could bo found i n  the appendix. 
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VIII. DISCUSSIONS 

O n  the basis of this derivation, we have developed a generalized Ohm's 

law for multicomponent gas mixture under the condition of non-LTE to a second 

order approximation, that includes all possible distant collision effects (i .e ., 
both elact ic  and non-elactic collision), the effects of temperature and pressure 

gradients of individual component gas, and also the effects of the magnetic field. 

The  general expressions for the coefficients of Ohm's law in terms collision 

parameters are presented, and also have developed a simplified expression for these 

coefficients in a specified model , namely, the hydrogen plasma. 

In  order to conclude this study, we would l ike to point out while the 

effects of non-LTE need to b e  taken into account, this can b e  characterized by 

the number density of electron (ne ) and temperature (T) of the gas by checking 

with certain particular parameters. For instance: 

( I )  The steady state and homogeneous plasma 

In a steady state and homogeneous plasma of sufficiently 

limited optical depth such that the photoexci tation and ionization 

in the plasma (i .e., the reabsorption of radiation) can b e  neg- 

lected, the vajidity of the condition of LTE can b e  expected 

only if  collisional rate processes dominate the radiative processes 

(i .e., the radiative decay and recombination}, and thus the 

criteria for the validity of LTE can be established b y  taking the 

ratio of collisional rate and radiative rate, according to the 

results of Griem 121, i t  yields 
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z -$a where n e t  Ea 

of electron per cm , first excited energy in ev., ionization 

, El, 2, aid T represent the nu-'ner density 

3 

energy in ev. atomic number and temperature respectively. 

This formula implies that for a specified model of gas, at 

a certain temperature there exist a corresponding e! ectron 

densify for which the LTE can be expected. Such a plotting 

of n e  vs- T i s  shown in Fig. 1, and the regions of LTE and 

non-LTE are indicated for a hydrogen plasma. 

(2) The homogeneous transient plasma 

In this case, i t  is usually necessary only to prove that, 

in addition to fulfillment of the criteria for LTE in a homo- 

geneous and time independent plasma, equilibration times 

a r e  sufficiently short for the establishment of a quasi- 

stationary near-LTE state, physically, this is the situation 

of the gas which is produced in the shock tube behind the 

reflected shock front. In such plasmas, collisional ioni- 

zation occurs mainly via excitation into intermediate 

states. Thus the ionization and excitation relaxation time 

i s  determined by the slowest processes in the chain, thus 

the longest time to establish LTE (i .e ., the inverse coil - 
isional-excitation rate of the ground state) can be expressed 



5 

The validity criteria for LTE then can b e  estcblished by the 

i nequal i ty 

< LTE 2-1,s 

char. 

- 
_71 - 1 ,  uncertain 

Non-LTE T > . (110) 

with T indicates the characteristic time. A case 

of hydrogen plasma i s  plotting in  Fig. 2. 

char. 

(3) Validity criteria LTE in steady state gasdynamics 

High temperature ionized (or dissociated) gases produced 

in a channel are  stationary for all practical purposes, for 

instance the plasma produced by a stabifized arc, b u t  con- 

ditions vary with respect to  the distance. In addition to  

the requirements for LTE in homogeneous and time-inde- 

pendent case, i t  is therefore necessary that the spatial 

variations of the electron temperature b e  small over dis- 

tances that a given particle can diffuse i n  times of the 

order of the equilibration times. This diffuse time can b e  

expressed by the mean free time approximately 
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i f  T~ < T char.  then the condition of L?E can be 

expected. A similar plotting for hydrogen gas is 

given in Fig. 3 .  

Based on these informations, i t  is possible for us to  know whether the 

effects of non-LTE should b e  taken into account or not a t  before hand in general, 

if  i t  is necessary to  use the generalized Ohm's law as  we derived here, however, 

we then should examine each term in Eq. (107). It  is very likely, only one or 

two terms have signif;eant effects. For instance, i n  the laboratory for a shock 

tube study, the terms of pressure and temperature gradients are much more im-  

portant than the others.. In the astrophysics problem, we know t h r e  i s  rl discre- 

pancy between the measurement and theory for the prediction of the electrical 

conductivity in  the upper photospheric layers, which the author believes that is 

because the condition of non-LTE prevails in the upper photospheric layers. This 

will form the later subject of further investigation. 

Finally, we should like to  recapitulate the main assumptions on which 

this theory is based on: 

(1) All the restrictions posed on  the Boltzmann equation have inherited. 

(2) T h e  interactions between the particfes and the external field have 

only the electric and magnetic fiefd being considered. 

(3) The energy of the translational degrees freedom and the internal 

degrees of freedom are assumed t o  b e  seperabf e. 

(4) For the translational degrees freedom, the distribution of each com- 
45 



ponent gas throughout the particle velocity space is described by the Maxwelliam 

distribution function plus the correction terms due to the gradients of macroscopic 

quantities for the translational degrees freedom. 

(5) For the internal degrees of freedom, the distribution of each com- 

ponent gas throughout the particles energy space is described by the Boltzmann 

distribution function. 

(6) In the present study only the electronic internal states qre  considered, 

which i s  understood that there i s  no difficulties to include other types of internal 

states in this theory. 

(7) The effects of non-elastic collision a r e  shown explicitly through the 

col I i si on i ntegral s . 
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FIGURE CAPTIONS 

Fig. 1 a Electron Number Density vs. Temperature for Steady State and Homogeneous 
Plasma 

Fig. 2 Electron Number Density vs. Temperature for Homogeneous Transient Plasma 

Fig 3.  Electron Number Density vs. Temperature for Steady Spatial Inhomogeneous 
Plasma 
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APPENDIX 

To determine the coefficients A 1, A2 . . . etc., in  the Eqs. (102) and 

(103) for the electron and ion gas, we shall use Eq. (89) together with Eqs. (93-101) 
1 1 m 

mi 
by negnecting the terms of order (A)" or higher. The following results are 

ob tai ned; 

For electron gas, 

. 

10 - 00 
AOO - - *lo i 
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L 

+ 3 
4 
I 

cef int 
k 

00 A I G  - 10 Aoo 
AO1 00 2A01 00 

10 01 00 - A O O A O 1  ' 
A 1 ~  ( 4 A ~ ~  A~~ 01 00 
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h 

15 1 15 I-% E;o] = - - + - - 
e Ai: 8 a e  

00 Aol - 00 01 
%0 10 A 1 O  AO1 
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h 

- 15 1 ----+ 
32n$ (1) 

,-.- 

55 



1 1 
I 

!?:e (1) 
[Loo] e = (A-6) 

(A -7) 

- 15 - - -  
4 10 01 lo  01 

I e A I O A O l  - A O 1  A 1 O  
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or 

Pi], 

n 



For ion gasp 

I 

A:: = - A , 0  00 
I 

I 

r 

E.101. I 
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3 n 
Cgoo]. I = -  16 (1) 

(A- 15) 

(A-16) 

(A- 17) 
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5 

2 
5 w + - -  =%tint ( 4 3 2 )  - -j- n, , ( I )  ) I 

2 k (A-19) 
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